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Abstract approved:

Dr. John W. Leonard

A three dimensional finite element analeis is developed which
is capable of simulating the coupled static and dynamic behavior of
compliant ocean structures. Nonlinearities which result from large-
deflection, reduced or zero stiffness in compression, and the noncon-
servative fluid loading are considered. The spatial variation of
fluidiloading is also adaressed.

The structures are assumed to be in the Morison flow regime.
Linear wave theory is used and multidirectional seas may be simulated.
A current profile which varies in magnitude and direction with depth
may be specified. Concentrated masses and loads as well as foundation
properties may also be modelled. The problem is fofmulated in updated
Lagrangian coordinat;s and a residual feedback incremental-iterative
solution scheme i$ used. Viscous relaxation is used to start the
static solution of problems with low initial stiffnesses. The dynamic

solution is performed in the time domain and uses the Newmark integra-

tion scheme.
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The beam-column eleﬁént is a two-noded subparaﬁetric element with
geometric stiffmess. The cable elément‘is a two-noded straight iso-
parametric element. Consistent mass matrices are developed for both
elements. The directionality of the hydrodynamic added mass is
accounted for ‘as is the discontinuity of the mass density for surface
piercing elements. A numerical scheme for calculating the equivalent
nodal loads due to an arbitra:y load profile between nodes is formu-
lated.

Numerical examples are presented to validate the solution tech-
nique and to demonstrate its use on three types of compliant ocean
structures: 1) the articulated tower, 2) the guyed tower, and 3) the
tension leg platform. Results from the guyed tower example indicate
that a decoupled analysis vields conservative peak guy tension and
deck displacement values. However the phase and form of the guy ten-
sion trace for the coupled analysis is significantly different from

the decoupled solution.
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NOTATION

Latin Symbols

A Cross—sectional Area

a; Constants in Newmark Integration Method
Bij Strain-Displacement Relation
Cij Daﬁping Matrix
Ca Added Mass Coefficient
CD DragVCoefficient
Cr Inertia Coefficient
c Wave Phase Velocity
d Water Depth
D Cylinder Diameter or Drag Width or Dynamic Magnification
: " Factor
Dij Stress-Strain Relation
E Elastic Modulus
Fy Nodal Loads
g Acceleration of Gravity
K. Keulegan Carpenter Number
Kij Stiffness Matrix
ég k Wave Number
. ,Mij Mass Matrix
Nij Element Shape Function Matrix
Pi Non-nodal Inertia Force
q3 Structure Displacement Vector
Ry Internal Nodal load Vector
R Reynolds Number




NOTATION (Continued)

T Period of Harmonic Oscillation, Cable Tension

t Time

uy Water Particle Displacement Due to Waves
Vs o Water Particle Displacement Due to Current
Wy Distributed Non-nodal Load Intensity

X4 Cartesian Coordinates (i = 1,2,3)
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Greek Symbols

o Angle Between Wave and Current Directions Newmark
Integration Parameter

Fdtis
doil
w

Frequency Ratio. Rigid Body Rotation Angle. Viscous
Relaxation Damping Factor

g
1%3 A Small Change Operator
n § ©  Virtual Operator
B ‘ '
e € Strain
z Newmark Integration Parameter
© Azimuth for Wave or Current
E C o Viscous Relaxation Decrement Factor
v Poissons Ratio, Kinematic Viscosity
E = T 31415 ceeenn
Ej Element Displacement Between Nodes
p Mass Density of Water
pij Mass Density Matrix
o} Stress
™
i
L] b Wave Potential Function

w Harmonic Frequency
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Superscripts

Left lower case:

Right lower case:

Right upper case:

Subscripts

Right lower case:

Time of the configuration in which the
quantity occurs

Iteration number

Subspecies identifiers (e.g. FL is the nodal
force, F, due to inertia, superscript I

i, j, k, 1 and numeric
Indices of a vector or matrix

All others are subspecies identifiers (e.g.

w, is natural frequency)
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COUPLED RESPONSE OF COMPLIANT OFFSHORE PLATFORMS
1.0 Introductibn

As long as there is a demand for petr&leum products and by-
products, there will be a need to exploit the world's undersea
petroléum and natural gaé deposits. 1In April of 1982 some 22 per-
cent of the world oil production was pumped from wellheads. sur-—
rounded by water (Ellers, 1982). As knéwn reserves from wells
located on dry land are depleted, this percentage will increase
necessitating production from wells in ever increasing water depths
and steadily more severe environments.

The economic production of petroleum in deep water requires
innovative structures which often test the limits of existing
design technology. The compliant production platforms are a large
class of deepwater structures which have challenged designers for
years. The combination of structural intricacy and load complexity
which must be dealt with often obscures a rational design
approach. Since they are compliant, these structures mist be
designed dynamically. Also, since they are exposed to loads which
vary in a nonlinear way and are themselves mechanisms which behave
in a nonlinear manner, their analysis is highly complex. Simpli-
fied design methods are required by practical comnsiderations, but
the method of simplification and its range of validity may not be
entirely lucid. In this study a finite element model is developed

which is capable of dealing with nonlinear dynamic prbblems of
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compliant platforms. This model can be used to test the limits of

validity of some of the commonly made design simplifications.

1.1 Compliant Tower Concept

As water depths approach 300 metere, fixed offshore stfuctureé
which rely upon bending and shear to transmit loads to the seafloor
becoﬁe inefficient forms. The large overturning moments of these
structures when they are subjected to wave action require massive
foundations and the increased natural periods of the properly
designed structures approach the range of wave periods which con-
tains significant energy. To safely build such structures in
increasing depths requires enormous designé and,’ae a result, enor-
mous costs.

To make drilling and production economicelly feasible in deep
water, designers have developed several different structural con-

cepts which rely upon compliance to reduce loading transmitted to

'thevanchorage and which use anchorages different from the canti-

lever beam—column concept of the traditional fixed structure.

A compliant ocean structure is ome which mdves iatefally
significant distances wben subject to wave and wind loadings. It
relies upon its dynamic softness to reduce maximum transmitted
anchorage loads, unlike the fixed structure where structural velo-
cities and accelerations are small and the time varying wind and
wave loads may be treated as a time series of static problems, the
compliant structure has significant kinematics and the role of

structural mass, added mass, and damping must be considered. This



is best illustrated by Figure 1.1-1 (after Nair and Duval, 1982)
which is a plot of the dynamic amplification factor versus fre-
quency ratio for a single degree of freedom spring-mass—damper
system. The dynamic amplification factor, D, is the ratio of maxi-
mum dynamic deflection of a system to the static deflection under a
static load of idenﬁical amplitude. The frequency ratio, 8, is the
ratio of the frequency of the dynamic load to the natural frequency
of oscillation of the system. A rigid structure is designed so
that its natural periods yield low g ratios so that its response
may be treated as static. A compliant structure is designed so
that the reduced motion as high values of B is obtained.

As water depth increases, the frequency ratio g for a fixed
oéeaﬁ structure is shifted toward significant dynamié mangnifica—
tion. Region I of Figure 1.1-1 represents shallow water fixed
structures while Region II represents deep water fixed struc-—
tures. As water depth increases past the 450 meter depth, the
dynamic magnification of practical forms of a fixed structure may
be found in Region III, where dynamic loads are extreme. Compliant
structures lie in Region IV, a region of attenuated dynamic res-
ponse. A tremendous design advantage is gained in this region, but
‘the penalty is that the design must now be a dynamic one.

In the ocean the loading frequency range due to waves is
large, ranging from capillary wave frequencies of as much as 100 Hz
to tidal and transtidal waves with frequencies of the order of 10—5

to 1078 Hz. (SPM, 1977). Fortunately, only a narrow band of wave
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frequencies possesé the energy to significantly affect offshore
structures. The waves in this band are the gravity waves with
periods of 5 to 25 seconds (0.2 to 0.04 Hz), and one must try to
design structures with natural frequencies outside this range. The
period distribution, or spectrum, of this wave energy is shown in
Figure 1.1-2 (Eliers, 1982) for two different geographical regions;
the Gulf of Mexico and the North Sea. The significant wave height
is the average height of the highest one-third waves in a given sea
state and is an indicator of sea surface roughness. Also shown in
the figure are the relative locations of structure periods for both

fixed and compliant offshore structures.

1.2 Review of Compliant Tower Concepts and Previous Research Work

Ocean engineers have used structural compliance as a means to
reduce environmental loads on structures for many years in the case'
of single point mooring systems (SPMs). With the success of these
simple systems, it was a natural development to éxtrapolate the
technology to larger, more complex structures. When increased
water depths made traditional fixed structures economically unat-—
tractive, the fundamental ideas of the SPM were applied on a larger
scale to offshore oil production platforms for ocean depths greater
than about 600 ft.

Compliant structure concepts may be classified in one of four
categories:

1. Articulated towers (ATs);

2. Guyed towers (GTs);
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Tension leg platforms (TLPs), also known as tethered

buoyant platforms (TBPs); and

Floating production facilities (FPFs)

Each reduces maximum stresses by complying (moving) with the

dynamic loads as they act on the structure and, hence, each expe-

riences motions that are large compared to those of fixed struc-

tures.

The concepts differ mainly in the means by which the

loadings are transmitted to the seabed and in the form of the

anchorage to the sea floor. They all resemble inverted pendulums,

with excess buoyancy replacing gravity loads.

The relative advantages of a compliant structure over a fixed-

base structure include:

1'

Reduced‘stfucture to connect platform to sea floor for
large water depths;

Lateral structural response at periods longer, and verti-
cal response at periods shorter than the predominant inci-
dent wave periods;

They are potentially more mobile and reusable in new
fields;

Increased fabrication and outfitting in comnstruction yards
reduces weather-sensitive offshore work periods;

Separate installation of foundations and/or installation
over previously drilled wells; and

Enhanced "tunability"” of periods of the system for a par-

ticular site,
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Some of the relative disadvantages or difficulties of

compliant structures relative to fixed-based structures include:

1. Structure must be designed to resist an enlarged spectrum

of wave loads due to enhanced responses at both low and

high frequencies;

i

e
ok

N

:

Increased concern about nonlinearities and stability of

dynamic motion;

£ ’j

3, Crew discomfort during motions;

Foundation and riser connection design;

Ea
.

5, Possible greater sensitivity to fatigue effects; and

6. Llack of experience to date with respect to design and in-

-~ service behavior.

1.2.1 Articulated Towers (ATs)

The articulated tower consists of a vertical column to which
E‘ buoyancy has been attached near the water surface and to which
: ballast is usually added near the bottom. The tower is connected

to the sea floor through an articulated hinge joint to a base which

may be of either piled or gravity type. The articulated hinge
E: generally is either a ball and socket or a Cardan type of joint.

‘The tower itself may be either a tubular column or a trussed steel

latticework.

The structure is dynamically tuned to have a natural period

removed from periods of high wave energy, usually longer than the

wind-wave period range. This is accomplished by adjusting the size

and location of buoyancy and ballast on the tower. In the process
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of tuning, consideration is also given to hinge loads, for it is
desirable to keep the loads to a minimum from both a foundation
design and hinge design viewpoint.

The articulated tower was among the first of the more elab-
orate compliant designs to see ocean service. It serves as the
first link between the sea-keeping analysis of the free body,
traditionally the domain of the naval architect, and the environ-
mental load analysis of the permanent structure, the traditional
task of the ocean engineer. The scale of the structure in its
region of applicability warrants a more elaborate analysis than is
commonly the case for a SPM.

Articulated towers are presently being used as single point
mooring and loading termiﬁals, control‘toﬁer and flare structures
and, coupled to a resident tanker, as early production facilities
in the North Sea and in the Atlantic Ocean. They also have been
studied for use as production platforms in marginal fields where
reserve size does not warrant large facilities. The structures are
typically designed for water deptﬁs of 200 to 600 ft but concepté
have been developed for water depths in excess of 1200 ft., Also
recently proposed are facilities which consist of multiple arti-
culated columns connected in parallelogram fashion to a foundation
and to a deck structure. Such an arrangement permits larger deck
loads and virtually eliminates roll and pitch motions of the deck.

Both in the United States (Chakrabarti and Cotter, 1980) and

in Great Britain (Kirk and Jain, 1977, 1981) the dynamics of these
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structures in two and three dimensions have been thoroughly
explored. Xirk and Jain employed a time step technique to solve

the nonlinear differential equation of motion using linear wave

‘theory and noncollinear current. Chakrabarti and Cotter's work

initially dealt with a closed form solution of the two-dimensional

problem but was later extended to include transverse tower

motion. More recently, Kirk and Jain have extended their work to
include the analysis of a double articulated structure in noncol-

linear wave and current,

1.2.2 Guyed Towers (GTs)

The guyed t@wer is a rectangular lattice column connected to
the sea floor by either a piled foundation or a "spud can” gravity
type foundation., The tower is long and slender and depends upon a
group of catenary guy lines for lateral stability in resiéting wave
and wind loads. Essentially it is an extension of the guyed radio
tower to the water environment. An important distinctive feature
of the guys is the clump weights which are attached to the cable
guys and whicﬁ initially are at rest on‘the sea floor some distance
from both the tower and the cable anchors.

The guyed tower is designed, as are the other compliant struc-
tures, fo have a natural period longer than the wave periods of
significant energy. This is accomplished largely by selection of
number of guy lines and control of guy line tension. Since it is
desired from operating requirements to have a felatively stiff

system for normal sea conditions the tower is tensioned to be
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fairly rigid; In thése éircumstanceé the clump weights are sized
to remain on the bottom. 1In survival sea conditions, it is desir-
able to allow the system to become more compliant. This occurs
when the clump weights leave the bottom. Not only does the guy
system become softer but also, since the natural period is on the
high end of the wave periods, the natural peridd of the structure
increases and the dynamic amplification factor for the driving wave
frequencies decreases.

’A‘guyed tower, the concept of which is attributed to L.D.

Finn, was first constructed as a one-fifth scale instrumented model

_test structure in 293 feet of water in the Gulf of Mexico in 1978

(Finn and Young, 1978). Results of the model test confirmed the
adequacy of Finn's original linearized analysis (Finﬁ, 1976) ofk
this complex structure as a means of obtaining peak loads. How—
ever, test data showed that such a simplified analysis would not
adequately describe the kinematic and dynamic response of the
structure as a function of time, an important concern in fatigue
analysis. Recent work (Mes, 1981, 1982) has begun to consider the
nonlinearities of the combined analysis problem of tower and guys
in a hydrodynamic loading environment. A nonlinear stochastic
analysis of a guyed tower using spring idealizations for guys has
been performed using the Fokker-Planck equation (Smith et al.,
1980). Currently, simplified tower-guy models are being developed
that are suitable for parametric study (Triantafyllou et al.,

1982).
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The only guyed tower in service to date is the above-mentioned
test structure installed in the Gulf of Mexico. Plans are under
way, however, for installation of a more than 1000 foot tower in

the Gulf of Mexico in 1983.

1.2.3 Tension Leg Platforms (TLPs)

The tension leg platform (TLP) is essentially a semisubmer-
sible vessel which is moored to the sea floor by a number of pre-
tensioned tendons. The tendons are connected at the sea floor to a
template which is piled in place. It is significant to note that
unlike the case of normal pile foundations, the piles experience
tension rather than compression. The tendons in early concepts
were often splayed out from the platform at significant batter but
model testing showed that such an arrangement led to large dynamic
loads in individual tethers, and now almost all TLPs have vertical
tendons which have larger pretension, a smaller dynamic load and a
net reduction in peak loading. Like the articulated towers, these
structures are free to move in surge and sway. They also have a
more limited freedom in yaw, while roll, pitch, and heave are
severely restricted by the pretensioned tendons. The structure is
sized by adjusting tendon tension and platform buoyancy so that
requirements concerning surge, sway, and yaw periods and "setdown”,
are satisfied. Setdown, the change in water line location on the
buoyancy chambers as the platform moves to maximum surge and’sway,
must not be so large as to permit waves to strike the deck struc-

ture. The natural periods of the structure in surge, sway and yaw



e |

2o

s

[
IS

13

must be greater than the wave priods of significant energy. The
heave, roll and pitch natural periods, on the other hand, being

much shorter, must be less than the significant wave energy

periods. Further, amplitudes of motion must be sufficiently small

to prevent flexural yielding of the drilling risers which connect
the platform to fhe subsea completion template,

A tension leg platform (TLP), also referred to as a tethered
buoyant platform (TBP), first saw ocean sefvice with the field
testing of the Triton platform in 1974 (MacDonald, 1974 and Pauling
and Hortom, 1970). The dynamics of the TLP have been considered
(Rainey, 1978, 1980) in terms of a Mathieu-Hill type noniinear
differential equation of motion. This equation resulted from the
nonlinear restoring force of the TLP structural system. The former
of these two papers is believed to be the first to demonstrate the
possibility of the existence of both subharmonic and éuperharmonic
instabilities of the tower motion. Much subsequent literature
déals with this problem (Albrecht et al., 1978; DeZoysa, 1978;
McIver, 1981; Yoshida et al., 1981; and Jefferys and Patel, 1981).

While many investigators were examining the nonlinear
instabilities of the TLP; others (Natvig and Pendered, 1980; and
Ashford and Wood, 1978) were examining optimized computational
techniques for both linearized frequency-domain analyses and time-
domain solutions of the equations of motion. Three-dimensional
potential theory has been used in the analysis of the motion of the
TLP in irregular seas (Gie and de Boom, 1981). Their work reveals

the particular effect of unsteady drift force on the structure.
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Presently no TLPs are in service but one is scheduled to be in
service in the Hutton field of the North Sea in 1984 (Tetlow and
leece, 1982; Mercier et al., 1980, 1982; Mercier and Marshall,
1981; and Mercier, 1982). Llocated at a site with 480 feet water
depth, it will serve as a test structure for comparison to fixed
structures, and also for extrapolation of the concept to deeper

water.

1.2.4 TFloating Production Facilities (FPFs)

Floating production facilities (FPFs) are similar to TLPs in
that they both use a semisubmersible type of vessel as a plat-
form. They differ by having a catenary-type of anchoring syetem
rather than the tendons of‘the TLP. As such, the structure is free
to move with relatively large amplitudes in the roll-pitch-heave
' ﬁodes compared to the TLP., It is required that natural periods in
all modes be removed from significant wave energy periods. Usually
the periods are desired to be longer than the wave periods. Guys
are selected and sized to limit surge and sway to amplitudes accep-
table to the riser cluster.

FPFs have been in service since 1975 in fhe North Sea. Ten

such units are presently in operation worldwide.

1.2.5 Comparison
Although selection of a structure is often dependent upon
stringent site-specific conditions as related to the mechanical

particulars of individual concepts, it is worthwhile to compare the



FIRER |

it

o3

e |

Gakdie

L

15

relative advantages and limitations of the various compliant struc-
tures.

In terms of relative payload capabilities for a fixed water
depth, the TLP may be ranked as béing capable of carrying the
heaviest deck loads. It is followed in order by the FPF, the GT,
and lastly the AT (lewis, 1982). Water depth range is listed for
the FPF as 250 to 6000 ft, for the TLP as 500 to 3000 ft and for
the GT as’6OO to 2000 ft (lewis, 1982); The estimated depth range
for the AT lies in the 200 to 1200 ft range and is limited by
natural period. It is difficult to obtain a soft system in shallow
water and the buoyancy requirements for a system stiff enough to
limit deck accelerations are prohibitive in deeper waters. The TLP
shallow limit is restricted by the pérmissibie angular offset of
the riser cluster and the deeb limit by the natural period of the
structure in heave. The GT is limited in shallow water by angular
deviation of the tower structure at the base, and in deep water by
the first natural mode of the tower in bending. The FPF has no
such mechanical limitations but is limited solely by economic
practicality.

Both the TLP and FPF offer excellént resistance to seismic
loadings because of their essentially free floating nature,
although some care must be exercised with regard to the heave
natural frequencies of the TLP. The GT and AT have less of an
advantage in this regard, with the vertical natural frequency
approaching earthquake spectrum frequencies as the léngth of tower

increases with water depth.
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Total structure weight naturally increases with water depth
but it increases at different rates for each structure (Lewis,
1982). The AT weight increases approximately parabolically with
depth due to increased buoyancy requirements. The GT weight
increases logarithmically due mainly to flexural stiffness restric-
tions. Both the TLP and FPF have a proportional weight increase
with depth (Lewis, 1982) since both concepts require reasonably
simple modifications to the tendons or guys to extend the floating
structure to deeper water.

The last comparison to be made here is one of operabiiity.
These are, after all, work platforms. The major advantages of the
GT and AT are that both provide continucus riser support from’the
sea floor and both allow deck-level completion of wells, techniques
already developed and proven on fixed structures.

The TLPs and FPFs requife subsea completion, a relatively new
procedure, and laterally unsupported risers which are held in ten-
sion to prevent buckling. Both structures require riser string
tensions which permit vertical motion of the platform to take place
without significant fluctuation in riser tension. The FPF, with
significantly more heave émplitude than the TLP, requires a much
larger tensioning system which adds considerable equipment cost and

loading to the deck structure.

1.3 Objectives of the Work
The objective of this work is to develop a computer tool suit-

able for the nonlinear coupled analysis of a compliant guy-
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structure system in an ocean environmenf; There exists in the
literature a significant volume of work dealing with separate com-
ponents of the compliant ocean structure. The dynamic response of
the platform, generally governed by the Morison equation, with
cables modelled as springs has been treated by a variety of authors
(Penzien, 1976; Taudin, 1978; Fish, Dean, and Heaf, 1980; Fish and
Raine?, 1979). Likewise, many investigators (Amsari, 1978; Suhara,
et al., 1981; Peyrot, 1980; De Zoysa, 1978; Wilhelmy, et al., 1981)
have contributed to the analysis of catenary moorings using either
finite element or finite difference approaches.

Generally the motions of the guy-structure system are deter-
mined in a decoupled analysis procedure. In this procedure, the
guys are first represented by springs with load deflection char-
acteristics similar to those of the static guy system. The plat-—
form is then dynamically analysed using these spring representa-
tions. The resulting motions of the platform analysis are then
applied to a dynamic model of the guy cluster and the resulting
loads in the cable to tower connection are compared to those of the
spring-platform analysis to see if they compare reasonably.

There is a subtle problem in this form of analysis that is
disconcerting. By performing this solution procedure, it is pre-
supposed that the procedure is valid and the results are forced to
fit an assumed character. Since the general éoupled dynamic pro-
blem involves numerous nonlinearities, the normal intuitive feel

for the proper response is quickly lost and it is difficult to
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assess the Validity of the assumpﬁions of decoupled analysis in a
qualitative manner.

Model guy tests and theoretical guy calculations indicate thét
there is a need for a coupled analysis which incorporates the non-
linear behavior of the total system (Mes, 1981). VOne main reason

is that theoretical work indicates that there is hysteretic energy

~dissipation in the guy system. Certainly hydrodynamic drag loads

on the cables are energy dissipatofs, and they are spatially and
directionally dependent. 1In a wave or current field, not only are
the drag loads dependent upon the spatial orientation of the cable
but also they are dependent upon the directionality of the wave or
current, drag loads being greater when moving against the wave or
current than when moving with it.

A nonlinear coupled analysis program which can deal with
phenomena such as the spatiélly and directionally dependent drag
férces will provide a means to quantitatively assess the validity
of decoupling assumptions and also the range of that validity. It
is doﬁbtful that the nonlinear coupled analysis will supplént more
simplified procedures since such analyses are usually by nature too
expensive and time consuming for all but perhaps the final phases
of design. They do, however, provide insight to the complicated
physical phenomena and with judicious model selection, such an
analysis will contribute greatly to physical understandihg of a

complex problem and to design confidence.
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1.4 Scope of the Work

The computer program developed in this work is a nonlinear
finite element program capable of solving large displacement pro-
blems, both statically and dynamically in the time domain. The
solution procedure is formulated using the updated Lagrangrian
coordinate reference frame. The algorithm used is a residual feed-
back scheme which is an incremental iterative technique in which
the load may be applied in steps with a full Newton-Raphson itera-
tion to convergence at each step. The linearized matrix equationms
are solved using Gauss elimination. Static problems with low
initial stiffness are considered using a viscous relaxation proce-
dure incorporated into the residual feedback algorithm. An implic-
it scheme, Newmark's method, is used for the numerical integration
in time.

The particular elements developed include a cubic subparame-
tric beam element with geometric stiffness, a two node isopara-
metric cable element and a foundation element. The beam element
has a consistenﬁ mass matrix which is adjusted for added mass over
all, or any portion, of the element. The cable element is a
straight element also with a consistent mass matrix. The cable
element mass matrix is fotmed assuming the cable is always sub-
merged. The foundation element incorporates viscous damping in
addition to spring stiffness in the six nodal degreés‘of freedom.

‘All element materials are assumed to be linearly elastic.
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Hydrédynamic loads are calculated from linear wave theory
qsing a form of the Morison equatin modified to account for element
orientation and element velocities and accelerations. Irregular
waves may be simulated by a series of wave components of varying
period, height, phase, and direction. Current is specified as a
current profile which may vary‘in magnitude and direction with
depth.

Additional loadings may be specified as concentrated masses or
concentrated forces. The concentrated masses participate in the
dynamic solution and are assigned weight. The concentrated loads
are static,

No interference, proximity or diffraction effects of the flow
are considered. Values of drag and inertia coefficiénts are speéi—
fied at problem outset and remain constant. Wind and seismic
dynamic loads are not considered.

Chapter 2 includes a discussion of the concepts and assump-
tions which form the basis of the mathematical description of the
physical problem; Chapter 3‘gives the derivation of the solution
algorithms, of the element formulations, and of the load calcula-
tion scheme. Chapter 4 contains a selection of program validation
problems and sample problems of compliant structures. Chapter 5 is

a summary of the results with recommendations for additional work.
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2.0 Basic Concepts and Assumptions

The compliant structure is, in general, a complex one. Com-
posed of many different elements, chain, cable, rope, tubulars,
structural sections; plate, etc., it presents a more than modest
challenge for the designer. In additional to the structural intri-
cacies, the loadings are a complex interaction of gravity, buoy-
ancy, waves, current, wind and seismic activity. In order to deal
practically with either the design or analysis problem it is neces-
sary to make certain simplifying assumptions. It is the purpose of
this chapter to set the ground rules and assumptions that were made

concerning the physical idealization (see Figure 2.0-1 for a

.general definition sketch). .

The mathematical derivations for the finite element model are
given in Chapter 3. Both static and dynamic solution algorithms as
well as the individual element stiffness and mass matrices are
developed there. The method of distributed load discretization is

also explained.

2.1 Structure
2.1.1 Beam—column‘Element

The primary structural components of the compliant offshore
platform are the beam—column elements which form the rigid support
frame for such deck components as living quarfers, helipads, dril-
ling tables, etc., The beam~column elements in this analysis are

subject to the following restrictions:
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Figure 2.0-1 General definition sketch
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The elements are composed of a linearly elastic mate-
rial. Significant deviation from linearity of modulus of
elasticity in such elements is usually an indication of
vielding, a condition undesirable for a practical design.
Although the beam-column elements may undergo large dis-
placéments elastic deformations are assumed to bé small
enough that small deflection beam theory is valid within
the elements.

Shear deformations are neglected. The elements are con-
gsidered to be long enough that transverse deformations due
to shear are negligible compared to those due to bending.
Bending moments of inertia about the major and minor axes
need not be the same. This permits modelling of standard
structural shapes used in deck framing.

Polar moments of inertia may be independent of bending
moments of inertia to permit the use of experimentally
determined torsional constants.

Element weight density may be specified independently of
element mass density so that the quasistatic solutions,
i.e. solutions in which inertia forces are neglected, of
dynamic problems may be performed for comparison with
dynamic solutions including inertia.

Hydrodynamic load coefficients are assumed to be indepen-
dent of the orientation of the beam. No account is taken
of variation in Reynolds number or Keulegan-Carpenter

number within the flow field.
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8. The hydrodynamic load coefficients are assumed to apply to
"
: an axisymmetric body. Since most submerged members are
- tubulars, and in light of the scarcity of information
. ' concerning hydrodynamic coefficients of nonaxisymmetric
™ . shapes, the assumption is a reasonable approximation.

2.1.,2 Cable Element

The second essential structural element found on most com-
pliant structures is the guy or cable element which provides
lateral sﬁability to the structure. Cables behave in an inherently

geometrically nonlinear fashion and linear approximations are suf-

ficient for only small deflection, low cable sag to span ratio

-
;3 problems. The cable elements of this analysis are subject to the

2 following assumptions.

A 1. The cable elements are composed of a linearly elastic

?% material. Most chains and steel wire ropes may be

N successfully’modelled under this restriction. Synthetic
-

iﬁ ropes do not generally satisfy this restriction, exhibi-
o~ ting highly nonlinear elastic curves as well as hysteresis
o

fj ovetr much of their working load range.

ﬁ 2. The cable elements are assumed to possess negligible

J flexural and torsional stiffnesses. This assumptionbade-

5 |

quately describes chain and most cable. Large diameter

[oges

wire rope however may have significant flexural and tor-

sional stiffnesses if the length to diameter ratio is

sufficiently small.
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3. In the slack condition, determined by the absenée of ten-

sion, zero structural stiffness is assumed.

I |

4., In the slack condition, inertia loads due to cable mass

] and added mass are transmitted to the connecting struc-
ture.
| N
§}§j , 5. TFElement weight density may be specified independently of
= v element mass density so that quasistatic solutions of
¥

dynamic problems are easily implemented.
E} 6. The cables are assumed to be cylindrical in shape and
G : '

hydrodynamic 1oad coefficients are assumed to be indepen-

g

dent of cable orientation and local water particle kine-

matics., These assumptions are reasonable for all ropes

i |

and, if a sufficient length is considered, they are also

valid on the average for chain.

2.1.3 Foundation Element

HNEERE I

The compliant platform is eventually anchored to the seafloor
by one or more of a variety of foundation devices such as piles,
fluke anchors, or gravity foundations. There is, of course, inter-
action between the seafloorvand ﬁhe structural anchorage. To
account for this interaction a simple foundation element is used.
it is subject to the following restrictions:

1. The foundation stiffness is linear over the range of

applied loads., |

2. The foundation may have different stiffnesses in each of

the six degrees of freedom.
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3. Energy dissipation by the soil is assumed to occur as
.
' equivalent viscous damping.
=
4, The damping parameter, like the stiffness parameter, may
3
;j be specified separately for each of the six degrees of
o freedon.
. 5. Any effective mass of the foundation must be represented
% as a lumped mass at the foundation to structure connec-—
tion.
-
: 6. Hydrodynamic loads on the foundation are ignored.
3§ 2.2 loads
o
In addition to dead loads due to gravity the compliant struc-
)
i “ture is influenced by buoyancy, waves, currents, tides, wind loads,

seismic loads and a variety of live loads peculiar to the purpose

of the structure. Only loads due to gravity, buoyancy, waves and

™ currents are considered in this work.

v 2.2.1 Gravity

;5 For the purpose of this study gravity is specified to act only
j ’ on members for which a weight density is specified and also on all
;j concentrated masses.

2 2.2.2 Buoyancy

2; The buoyancy force is assumed to act in opposition to the

- forces due ﬁo gravity. It is applied to all members for which

3 displaéed volume is specified and is applied only to those elements

or portions of elements which lie below the still water level.
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2.2.3 Wave Loads
Wave loads are calculated using a generalized form of the
Morison equation. The Morison equation as originally proposed
(Morison et al.,, 1950) for a fixed vertical pile is expressed as
2

. . I “
p Cy D | ul| 4 +7 e Cp D7 ] dx, (2.2.1)
where p is the fluid density, D is the pile diameter. The horizon-

tal fluid particle velocity ., and .the horizontal particle

1?
acceleration ;l are determined using an appropriate wave theory.
The parameter Cp is the empirical drag coefficient and Ct is the
inertia coefficient. Both coefficients are determined from
governing design rules or from experimental data.

To calculate the forces on an inclined cylinder the Morison
equation needs to be modified to account for the orientation of the
cylinder axis relative to the water particle velocity and accelera-

tion vectors. Although there are at least four different methods

of calculating forces on inclined cylinders using the Morrison

equation (Wade and Dwyer, 1976), the method recommended by Sarpkaya

and Isaacson, 1981 is used in this work. The resultant water par-
ticle velocity and acceleration vectors are decomposed into com-
ponents tangent to and normal to the cylinder. The normal com-—

ponents are used to calculate the wave loads. Forces due to the

tangential components are neglected. That it is acceptable to

neglect the tangential component has been shown by Berteaux,

1976. The equation may thus be written in vector component form as
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ar. " = [% p Cy D |u 11\1|u11\1 +%p o p? ulf ] dx} (2.2.2)
where the superscript N indicates flow normal to the cylinder axis
and dxi is the différential distance along the cylinder axis.

The equation (2.2.2) may be further modified to account for
the motion of the cylinder in the fluid., The inertia coefficient,
CI’ may be considered to be made up of two components, the added
mass coefficient, Ca, and a term due to the pressure gradient of
the accelerating fluid. The added mass term is the value of fluid
mass which must be accelerated at the same rate around the cylinder
to preserve a uniform flow field both ahead of and behind the
cylinder. 1In ideal flow its value can be shown to be unity for a
cylinder, but real fluid effect usually reduce this value to less
than unity. The term due to the pressure gradient of the accelera-

ting fluid may be calculated from the Bernoulli equation and is

found to be unity. Thus,
CI = Ca + 1.0 (2.2.3)

when the fluid is uniformly accelerating past the éylinder. When

the cylinder is accelerating in a fluid at rest

c. =2¢C - (2.2'.4)
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After the velocity and acceleration terms for both fluid and cylin—-

cey

der are substituted into Equation (2.2.2), we obtain

g

Eﬁ w o .1 + N « N « N » N
. dF’y =[50 Cp D i 94 | @ i " 94
i
. I 2" N _1I 2" N ‘
+-Zp(Ca+l)D u g 4pCaD qi]dxi (2.2.5)
™)
where d? and q? are the components of cylinder velocity and accel-
ﬂ‘
vj eration normal to its axis.
-
4 2.2.4 Current Loads Without Waves
ol

In the ocean, current direction need not coincide with wave
direction and may vary with depth. The current speed may also

change with depth. To permit a realistic current description, a

current profile which may vary in both magnitude and direction with

3 depth is considered. The current is assumed to be steady and it is
£ ,

assumed to have no vertical component.
5 The hydrodynamic load due to current only is calculated using
- the drag term of the generalized Morison equation
- , c _ 1 N _ N N _ .N '
¥ aFC =3 locp | ¥ -4 | Gf -4 ) ax (2.2.6)
o .
- N .
i where v, is the current velocity component normal to the cylinder

and Fz is the hydrodynamic drag force due to current.

n

+

g
e

.
Wi i
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2.2.5 Combined Wave and Current Lloads
E: Wave and current loadings naturally occur simultaneously. An

exact treatment of the combined wave and current kinematics for

other than a uniform current is a complicated problem and is

unsuitable for the purpose at hand. Fortunately, a simple super-

position scheme has been shown to be adequate when the Morison

F? equation is used for most situations of engineering interest

;

(Dalrymple, 1974). Provided that the particle velocities are sum-

med before calculating the drag load rather than calculating the

drag loads individually and then summing (the result being under-—

predittion of the drag load) the nonlinear effects due to the

interaction of current and wave are negligible (Leomard and

Hudspeth, 1979); When the drag force is properly accounted for the

combined force equations becomes

.~
| H w+ e
E Fg -jL (dF )
1 N N N N N N

IL[prDD‘u +v, - q ‘(u +vi—qi)
-
CL -IL 2.0N— -II— 20"N '

+ 7 (Ca + 1) D ug 7 P Ca D q ] dxi (2.2.7)

In this final form of the equation, CD and C, values determined

o ~ from experimental data should be selected using the Reynolds number

of Keulegan-Carpenter number calculated using |(un)max + v.o- 4.l




kg

g
frE

st

E§

1

31

where (ﬁn)maX is the maximum normal water particle velocity due to

wave., That is,

@+ ¥ - &
R = (2.2.8)
e v
and
(&N)max + - T
K, = 5 (2.2.9)

where Re is the Reynolds number, K is the Keulegan Carpenter
number, v is the kinematic viscosity of the fluid, and T is the
wave period.

Water particle kineﬁatics due to waves are calculated using
linear wave theory with no adjustment for free surface effects.
When a current is present, the wave characteristics need to be
modified to reflect the current upon which the wave is super-
imposed. Figure 2.2-1 shows a sketch of the wave-current field.
If the curreﬁt is uniform, one may derive the wave particle kine-
matics in a reference frame moving at a constant velocity which
freezes the wave form with respect to time (Sarpkéya and Isaacson,
1981). The current is assumed to move at a uniform velocity, v .
The wave celerity, ¢, in a reference frame moving at velocity, v ,
is defined as ¢ = w/k where w is the angular frequency
(w =‘2n/T) and k is the wave number (k = 2r/L; L = wave length).

The reference frame which freezes the waveform thus moves at
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Figure 2.2-1 Definition sketch for waves. and current
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* . ' > . ' 3 -
velocity ¢ + v. If 4 is defined as the water particle velocity

observed in the reference frame moving at ¢ + v then ' = u -

v - ¢, where U is the water barticle velocity observed in the fixed
reference frame. Using the standard small amplitude wave theory
boundary conditions, one may solve the Laplace equation,

V2 $' = 0, &here ¢' = ¢ - (c + v) xp and xp is a horizontal dis-
tance measured in the direction of wave propagation. The dispersion
1/2 |

relation obtained is ¢ = [g-tanh kd]

" where g is the acceleration

of gravity and d is the water depth. 'This relation is identical to
that derived fqr waves in no current, i.e. if the reference frame
is moving with the current, the wave appears identical to the wave
that would be observed if there were no current. It has the same

-

wavelength and period. This implies that in the fixed reference

~ frame the presence of uniform current is observed as an apparent

change in period of the wave, i.e. a Doppler effect.

The wave celerity with respect to the fixed reference frame
may be expressed as c, = ¢ + ¥ and the wave frequency with respect
to the fixed frame may be expressed as w, = w+ k v . For currents
oblique to the direction of wave propagation, only the component of
current parallel to the direction of wave propagation alters the

wave kinematics so that the wave frequency may be defined as
wcr= o+ k )G‘ cos a (2.2.10)

where o is the angle between current direction and wave direction.
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If the current profile varies with depth the problem is more
complicated and a simple solution is no longer possible. Although
Biesel, (1950) has solved the problem for a triangular steady cur-
rent profile, more genmeral solutions are unknown. As a con-
sequence, an ad hoc procedure is used here to account for the
apparent Qavé frequeﬁcy shift. A weighted average current in thé

wave direction is calculated according to the relation

f_o v (x.,)cos a (x,) cosh (k (x, + d)) dx
> = ¢ 3 3 3 3 (2.2.11)

[24 cosh (k (x5 + d)) dx,

where d is the water depth and <¥> indicates the weighted average
current velocity in the direction of the wave. The frequency Wy is

then calculated from the relation
w, = w + k <> (2.2.13)

There is an ambiguity as to which wave frequency value is
specified in the design wave or wave spectrum. In situ recordings
obviously yield values for w, . Hindcasts based on wind data give

values for w. If one has values for w it is necessary to calcu-

c’

late an adjusted wavelength which reflects the frequency of the
wave in still water. If one has values of w, it is necessary to

compute w.. Rarely in the conceptual or design phase of most off-

o

shore structures is in situ information available for design and

hindcasts are often the only source of loading information. For
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this reason, the wave period that is assumed given is that corres-

ponding to w. The value of Wa is calculated.

2.2.6 Concentrated Loads and Masses

To permit some versatility in loading, provision is made for
the use of both concentrated loads and concentrated masses. The
concentrated loads are time invariant‘in the dynamic solution. The
bconcentrated masses posséss time invariant weight due to gravity in
static calculations and they have both time invariant weight and

inertia which are effective in the dynamic solution.

2.3 Equations of Motion
Newton's second law for a multiple degree of freedom system

may be written in vector component notation as
F, = M., q. (2.3.1)

where the force vector, F., is composed of the restoring force

1°?

Kij qj, the structural damping force, Cij qj , the forcing function

H s
Fi (t), and any steady loads Fi . M.

3 is the mass matrix, K;: is

1]
the structural stiffness matrix, Cij is the structural damping

matrix and qj is the vector of structure displacements. By

inserting the expressions for F; into Equation (2.3.1), one obtains

M., q. +C,, q. +K,, qj = F? () + Fi (2.3.2)
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which is recognized as the equation of motion of an oscillating

‘system.

Since structural damping is generally assumed small with res-
pect to hydrodynamic damping, the second term in Equation (2.3.2)
is neglected in this work. Integration of Equation (2.2.7) over
the length of the member, L, and substitution of the result into
Equation (2.3.2) lead to the relation

1 N| N _ «N _ N
Moooa +Koa =[50 CpD V] ) + v - q))

2 s

2 "N “N
+ % 5 (c, + 1) D o - I, c, 0’ q] L+ F (2.3.3)
where
N 3 «N N eN.2 (1/2
vl = (2 @+, =an") (2.3.4)
i =1 i i* i

is the resultant relative velocity of node i. This set of simul-
taneous second order differentral equations must be solved numer-
ically for all but the most trivial structures. Chapter 3

describes the numerical techniques used in this work.
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3.0 Finite Element Formulation

The mathematical model of the compliant structure is based on

the stiffness method of finite element analysis. The load-

deformation characteristics of a number of discrete elements com—

g} ‘ prising the structure are described in approximate fashion by the
o ,

load-deformation characteristics of the nodes to which the elements
m
ol
i are connected.
) In the case of static linear structural analysis, the discre-
\::ii .
i“ tization leads to a set of simultaneous linear equations which may
= be written in indicial notation as
ol
! ,
F, = K,, q, | -0.
;J i ij qj (3.0.1)
)
fj where repeated subscripts imply summation over the range 1, N; N =

number of degrees of freedom, F; are components of the nodal load

vector, Kij are invariant stiffness coefficients due to the con-
E? » necting elements, and a3 are components of the vector of nodal
i .
displacement,
For large-deflection statical problems, the stiffness matrix

becomes a function of the displacement vector,

Fi = Kij (qk) qj (3.0.2)

G
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and the solution of thé nonlinear simultaneous equations becomes
more difficult. Generally the nonlinear problem is solved by first
linearizing the nonlinear relationship and then performing some
form of incremental, or iterative, or combined incremental-
iterative solutionm.,

No matter which solution scheme is selected for the nonlinear

- problem, it is required to analyze the structure in a comsistent

reference frame so that the true loads and displacements and the
true strains can be calculated. Small defiection analyses are
performed using a Lagrangian reference frame in which the new posi-
tion of the structure after loading is measured from the original
position. For such analyses the small strain relationship between
deformationkand disﬁlacement is valid and the étrain—displacement‘
relationship is linear. When combined with a linearly elastic
stress~strain relationship such as has been assumed for this work,
the resultant load-deflection relationship is a linear one, i.e.
Equation (3.0.1).

The rigid body translational components of the nodal displaée—
ments become important relative to deformation when displacements
are large. In structural analysis there are two génerally used
methods of dealing with these large displacements, the total
Lagrangrian formulation and the updated Lagrangian formulation
(Cook, 1981). The former uses the Green-Lagrange strain tensor,
which contains nonlinear terms, to account for large displacements

in the element formulation. The latter permits the use of the
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small displacement strain tensor by updating the nodél coordinates
in a manner that accounts for the large displacements. The updated
Lagrangian formulation was selected for this work because of the
availability of a 1argé variety of possible elements for use in the
program element library.

In the updated Lagrangiam teéhnique the Coordinateé in‘which
the elements deform are local coordinates for which the use of the
small deformation strain tensor is valid. The orientation of these
local coordinate systems is determined from the current nodal coor-
dinates which are calculated from the displacement results of the
most recent increment or iteration. The deformations of the ele-
ments due to previous loads are converted to equivalent intermnal
nodal forces and are treated as preload. This preload cancels that
part of the applied external load which would cause the existing
deformation and leaves only the difference between the external and

internal load to cause additional deformationm.

3.1 Static Solution Techniques

The simplest solution to the static equations of equilibrium
occcurs when thevstiffness matfix as invariant;'the force
displacement relation thus being linear, In this case a Gauss
elimination scheme will obtain the unknown displacement, given the
stiffness and the nodal loads. The LDLT decomposition and back-

substitution variant of the basic Gauss elimination technique

Y(Bathe, 1981) was chosen as the funaamental equation solver for

this class of problems. It was selected primarily because of the
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wealth of available program procedures which have been developed

- for it (Bathe, 1981, Zienkiewicz, 1977).

If, as discussed in Section 3.0, the calculated nodal
displacements are large, the stiffness matrix becomes a function of

the displacements. To solve the nonlinear relations, a residual

feedback technique is used (Tuah, 1982). This technidue is a com-

bined incremental-iterative solution of the linearized load-
displacement relations.,

The iterative part of the algorithm may be derived by
expanding the nonlinear matrix equation (3.0.2) in a Taylor series
about the displacement vector, 93 evaluated at an apﬁroximate

displacement, qg—l,

aFi(q)]n—l
3q.
qJ

)]n—l 2

n-1 n, _ n n
F.(gq ~ + Aq ) = [F, (g + Aqy + 0 [Aqg]" (3.1.1)

withn=1,2,3.... A following lower case superscript denotes
iteration number and Aq? is a correction to q?nl. The displacement
vector, q? is defined as the initial structure displacement, When
only first order terms in the Taylor Expansion are retained and
when it is recognized that

2P (0 o1y o (3.1.2)

9q. ij
qJ J

where K:;l is the tangent stiffness matrix, the equation becomes
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)n—l n-1

n-1 n, _ n
F, (qk + Aqk) = F, (q + K, qu (3.1.3)

)n-l is the load vector required to keep the

structure in the shape represented by the displacements q§_1 and it

The load vector Fi (qk

. . : n—-1
is equivalent to the internal load vector Ri caused by these

displacements. The expression may then be rearranged as

Aq? = - § (3.1.4)

qI.1 = q,. + Aq? (3.1.5)

The algorithm can be converted to an incremental-iterative
scheme by simply defining the first iterations to the stiffness
matrix, Ki?, and to the intermal load vector, Rg, at time, t + At,

as those determined at the previous time, t. That is,

t+At K.?_l Aq? - t+AtF' _ t+AtRP—1 (3.1.6)
i3 3 i i .

where a leading superscript denotes increment number; the initial
value of the internal load is the internal load determined from the

previous convergent load step,

tHAt po _ tgn (3.1.7)
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and the initial value of the tangent stiffness matrix is also
determined from the configuration of the previous convergent load
step,
t+At (o) t, n
At g 0 = BT (3.1.8)
1] 1]
Convergence to the proper solution during iteration is deter-
mined by calculation of the norms of the displacement vectors a3

and qu. When

: j
- =l < Tol (3.1.9)

o122

Lo
fan
[
.

where Tol is a specified convergence tolerance and N is the order
of the vector, convergence is assumed to have been reached.

Many compliant structures possess an initially low, or zero,
stiffness with respect to transverse loads when in their still
water équilibrium configurations. Atﬁempting to solve the stiff-
ness equation without some sort of starting modification‘results in
either a singular matrix for which a solution is not possible or in
extremely large initial displacement estimates and the probability
of slow or no convergence to a solution.

In order to accommodate low initial'stiffneés, the residual

feedback scheme has been modified to use a technique known as


